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Furiously Flashing Fireflies

synchronised signaling in the mab’nggame

One of the most spectacular displays in the whole of nature occurs in South-East Asia,

where huge swarms of fireflies flash in synchrony. Why do the flashes synchronise?

This question is answered by introducing a mathematical model of how fireflies respond

to each others’ signals. The lecture will discuss this application of mathematics to

biology, and related ones, in non-technical terms.

Fig.1 Synchronous flashing of fireflies in a trw.
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The drama of synchronous flashing of cefltin species of firefly was descfibed by
the American biologist Hugh Smith in 1935:

‘Magine a tree thirty-five to forty feet high, apparently with a fwefly
on every leaf, and dl the fneflies flashing in perfect unison at the rate of
about three times in two seconds, the tree being in complete darkness
between flashes. hagine a tenth of a tie of riverfront with an unbroken
line of mangrove trees with f~eflies on every leaf flashing in synchronism,
the insects on the trees at the ends of the line acting in pefiect unison with
those between. Then, if one’s imagination is sufficiently vivid, he may
form some conception of this ting spectacle.’

Why do the flashes synchronise? The biological reason seems to be an evolutionary one.
The flashes are created solely by male fneflies, and they attract females. Synchronised
flashes attract them from further away, offering an evolutionaryadvantage.

What about the mathematical reason? h 1990 Renato Mirollo and Steven Strogaw
showed that synchrony is the rule for mathematical models in which every fnefly interacts
with every other. Their idea is to model the insects, and the signals that pass between
them, as a poptiation of mathematical oscillators, coupled together by visual signals. The
chemical cycle used by each fwefly to create a flash of light is represented as an oscillator.
The population of fireflies is represented by a network of such oscillators with fully
symmetric coupling — that is, each oscillator affects dl of the others in exactly the same
manner. The most unusual feature of this model, which had been introducd by Charles
Peskin in 1975, is that the oscillators are pulse-coupled. That is, an oscillator affects its
neighbors only at the instant when it creates a flash of light. The mathematical difficulty
is to disentangle all of these interactions. We do this by applying techniques from
dynamicd systems theory, in which oscillators are an especi~y important component. So
first I shti develop some of the necessary concepts.

Oscillators
Oscillators are a source of periodic rhythms, which are common — and importmt

— in biology. Our hearts and lungs follow rhythmic cycles whose timing is adapted to
our body’s needs. Many of nature’s rhythms are like the heartbeat: they take care of
themselves, running ‘inbackground. Others are like breathing: there is a simple ‘default’
pattern that operates as long as nothing unusual is happening, but there is dso a more
sophisticated control mechanism that can kick in when necess~ and adapt those rhythms
to immediate needs. Controllable rhythms of this kind are particularly common — and
particularly interesting — in locomotion. Although the biological interactions that take
place in individual animals and populations of animals are very different, there is an
underlying mathematical unity, and one of the messages of this Icture is that-the samie
general mathematical concepts can apply on many different levels and to many different
things. Nature respects this unity, and makes good use of it

The organizing principle behind these biological cycles, and many like them, is the
mathematical concept of an oscillator — a unit whose natural dynamic causes it to repeat
the same cycle of behaviour over and over again. Biology hooks together huge ‘circuits’
of oscillators, which interact with each other to create complex patterns of behaviour.
Such ‘coupld osctilator networks’ area centi research topic in today’s mathematics.

—
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Why do systems oscillate? Oscillation is the simplest thing you can do if you
don’t want, or are not allowed, to remain still. Why does a caged tiger pace up and
down? Itsmotion results from acombination oftwo constraints. First, it feels restless
and does not wish to sit still. Second, it is confined within the cage and cannot simply
disappear over the nearest hfil. The simplest thing you can do when you have to move but
can’t escape altogether is to oscillate. Of course there is nothing that forces the oscillation
to repeat a regdar rhythm, the tiger is free to foUow an irregular path round the cage. But
the simplest option — ad therefore the one that is most likely to arise both in mathematics
and in nature — is to find some series of motions that works, and repeat it over and over
again. And that is what we mean by a periodic oscillation. A more physical example is
the vibration of a violin string. That, too, moves in a periodic oscillation; and it does so
for the same reasons as the tiger. It can’t remain still kause it has been pluckd away
tim its natural resting poin~ and it can’t get away altogether because its ends are pinned
down and its toti energy cannot increase.

There are at least two distinct ways in which oscillations can arise. Many
oscillations grow from steady states. As conditions change, a system that has a steady
state may lose it and begin to wobble periodicdly. In 1942 the German mathematician
Eberhard Hopf found a general mathematical condition that guarantees such behaviom in
his honour this scenario is known as Hopf bifurcation.

-!

Mg.2 Cration of an oscillation by Hopf bifwcation.

The workings of a clarinet, for example, depend upon Hopf bifurcation: as the clarinetist
blows air across the instrument’s reed, the red ceases to remain steady and begin to
vibrate. This vibration is transmitted to the air, and the vibrating air is what we hear as
music. Hopf bifurcation can be seen as a special type of symmet~-breaking. This is a
general mechanism for pattern formation, in which a symmetric system adopts states that
are not fully symmetric because the symmetric state is unstable. In Hopf bifurcation, the
symmetries that break relate not to space, but to time. Time is a single variable, so
mathematically it corresponds to a line, the time axis. mere are only two types of
symmetry of a line: translations and reflections. What does it mean for a system to be
symmetric under time translation? It means that if you observe the motion of the system,
or wait for some fixd interval of time and tkn observe tie motion of the system, you see
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exactiy the same behaviour. But that is a description of periodic oscfilations: if you wait
for an interval of time that is equal to the period, you see exacfly the same thing. SO
periodic osc~ations have time-translation symmetry.

The oscillations of fmeflies are not created by Hopf bifurcation, but by a second
mechanism known as ‘integrate-and-f~e’. In such oscillators some quantity builds up
until it reaches some thresho2d. This rnggers a sudden change in which the quantity is
reset to a much lower value, after which the build-up occurs again. In the firefly, this
qumtity is the amount of chemical neded to produce a flash. Once the fly has stockpded
enough chemical, it uses it up in a flash and the whole process starts again.

Another physical example of such an osctiator is the build-up of electic charge in a
capacitor, which discharges when the total charge reaches some spec~lc threshold.

~ ~~~[::e..................................................... ............................................ .............................................
integrate

................................................................ ...................................................... ................................................................

Ng3 Integrate-and-free oscillator.

In 1975 Charlie Peskin, a physiologist, introduced a spectilc model of an integrate-
and-fwe oscillator in a study of the synchronisation of the muscle fibres of the heart. His
model is a differential equation, Peskin’seqwtion:

where S and y are constants >0, together with a ‘ftig rule-’:
if x(t)= 1 at some time t then it is reset to x(t) = O.

This same model applies to fweflies, and is justifid by physiological studies.

Coupling
OsciUators are said to be coupled if each affects the state of the other. The classic

example is the observation, made by Christian Huygens, that pendulum clocks on the
same shelf of a clockmaker’s shop affect each other (through vibrations of the shelo.
Often the result is that they synchronise. However, coupld oscillators do not rdways
synchronise, an example being an animal’s legs when it W*S. Each leg is an oscillator,
and the animal’s body couples them, but they do not no@ly dl move at once.

Peskin introduced the idea of pulse coupling for integrate-and-fire oscillators:
Here the oscillators affect each other only when one fires. Then it sends some signal to the
others, which adjusts their states. Suppose osci~ator i is coupled to osciUator j, their states
at time t being represented by the quantities xi(t) and Xj(t). Assume that oscillator i

reaches threshold and fis. Then

—

Xi(t)is reset tOO
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and Peskin required that

xj(t) is ‘pulled up’ by an amount E, kcotig xj(t)+&.

E this exceds threshold, then it too is reset to O.

It turns out that the chemicals in fueflies are affected in just this manner by signals from
other fweflies. When a fnefly sees another one flash then it gets excited and produces
more of i~ luminescent chemical!

Peskirt provd that if two identicd integrate-and-fire oscillators are pdse-coupled,
then for tiost all initial conditions they will eventually synchronise. I will prove tiis
below. He dso conjectured that the same would be true of any network of coupld
integrate-and-fire oscillators.

Two Oscillators
We can solve Peskin’s equation explicitly, getting

x=”~(l-e-Yt).

This formula can be used to calculate how the coupled oscillator system behaves. For
example the period T satisfies

since the threshold vrdue is @y convention) x = 1. So we get

T1
s

=Ylog —.
s-y

‘1

Fig.4 Ph& portrait of a two~sciflator sys&m, nocoupting.



,.
6

!*

First suppose that we have two oscillators x 1 and x2, both satisfying Peskin’s

quation. To begin with, ignore the coupling. Then we cm apply the formula and plot
how the combind values (xl(t), x2(t)) vary with L The result, called a phase portrait, is

shown in Fig.4. The synchronised state, x 1 = X2,is represented by the diagond line.

We can represent the fting rule graphically by adding a ‘margin’of width &to the
picture, in which one oscillator fires and the other is pulled up
Traversing the margin takes zero time.

by &, as in Fig.5.

‘2

.,
‘1

Fig.5 P& po~ait of a two-osciUator system, coupfing added.

Finally, we ‘wrap round to show the periodicity, as in Fig.6.
Now we can read off the behaviour. Initial states in the region labelled ‘1’

synchronise after one ftig. Those in region 2 synchronise after two ftings, and soon. It
looks as if the entire region labelled ‘...’ fills up with states that syncrhonise. Using
Peskin’s fomula this can be checked — note, however, that there is a line of states running
through the middle of that region that represents a periodic unsynchronised state.
However, it is unstable.

~o~o and Strogatz proved that with a more general law than Peskin’s, and with a
system of n identicd integrate-and-fne pulse-coupled oscillators with ‘dl to rd~coupling,
then no matter what the initial conditions are, eventually all of the oscillators become
synchronised. The proof is based on the idea of absorption, which happens when two
osci~ators with different phases lock together’ and thereafter stay in phase with ach other.
Because the coupfing is fully symmetic, once a group of oscillators has iockd together, it
cannot unlock. A geometric and analytic proof shows that a sequence of fiese absorption
must eventually lock all of the osci~ators together.

h other networks, more complicated patterns are possible — inclutig chaos.
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~eseideas apply tomanysystems other than f~eflies. Applications include the
pacemaker cells of the hem, networks of neurons in the brain, including those controlling
circadian rhythms; the insulin-secreting cells in the pancreas; crickets and katydids that
chirp in unison; and groups of women whose menstrual periods become synchronism.

And, as a Rugby bus driver pointed out to me, it is also closely related to the
phenomenon whereby you wait for a bus and none come, until suddenly three come along
at once.

Synchronised buses!
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(jresll:it~l (;olleget v:lsest:ll)lislle~ lin 1597LlrlClertlle~Villof

tile Elizalkthan financier Sir lllc)Ill:ls Gresll;llll, rvho nominated

the Corporation of the City of Lonck>n ancl the Worshipful

Company of &[ercers to I>e his Trustees. They rn~nage the
Estate through the joint Grand Gresham Committee. The
College has been maintained in variolls forms since the

foun(lation. The (>ne continuing activity (excepting the perioci

1939-45) has . been the annllal appointment of seven

distinguished academics “sufficiently teamed to reade the

lectures of diqntye, astronomy, mllsicke, and geometti’

(appointed by the Corporation), “meete to reade the lectures

of Iawe, phissicke, and rethoricke”, (appointe~t by tile hlercers’

Company). From the 16ttl centuty the Gresham Professors

have given free public lectures in the City. A Mercers’ School

Metnorial Chair of Commerce has been aclcled to the seven

‘ancient’ Chairs.

The College was formally reconstituted as,an independent

foundation in 1984. The Governing l~oc{y,with nominations

from the City Corporation, the Mercers’Company, the Gresham

I>rofessors and the City University, reports to tlleJOint Grand
Gresham Committee. Itsobjectives are to sponsor innovative

: research ancl to supplement and complement existing facilities

in higher ect~lcation. It ck)es not awarcl (Iegrees ancl cliptotnas,

rather it is an active collaborator with institutions of higher

education, learned societies and professional bodies.

Gresharn College, Barnard’s Inn li:lll, }Iolborn,
London ECIN 2FII1. Tel no. 01718310575
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