GRESHAM COLLEGE

The incredible sine wave and its uses

Professor Sarah Hart

Gresham Professor of Geometry

x
\square
$\cos (x)=\frac{\text { adjacent }}{\text { hypotenuse }}$
$\tan (x)=\frac{\text { opposite }}{\text { adjacent }}$

Hipparchus - Father of Trigonometry?

- Astronomical calculations using chords
- Calculated distance to moon at 59-67 Earth radif

- Half chord more convenient
- $\sin (\theta)=\frac{L}{r}$
- chord length depends on θ and r
- Sine depends just on angle

Sine

- Sanskrit
$j \bar{j} \bar{a}=$ bowstring.
- Arabic jiba
- \rightarrow jayb = cavity
- Latin sinus

- $\sin (\theta)$ is height above horizontal of point on circumference at angle θ in circle of radius 1 (unit circle)
- 360° in circle a bit "mundane"
- Angle in radians = distance travelled round the circumference in a unit circle.

4

The Sine Rule

$$
\frac{a}{\sin (A)}=\frac{b}{\sin (B)}=\frac{c}{\sin (C)}
$$

Regiomontanus (1436-76)

- Wrote one of first trigonometry textbooks in Europe, De Triangulis Omnimodis
- "You who wish to study great and wonderful things, who wonder about the movement of the stars, must read these theorems about triangles."
- Early book of trig tables (1490)

Georg Rheticus (1514-1574)

- Very accurate trig tables (1551) non-standard functions, and banned!
- Trig formulae developed to calculate tables:

$$
\sin \left(\frac{x}{2}\right)= \pm \sqrt{\frac{1}{2}(1-\cos x)}
$$

$$
\sin (a-b)=\sin a \cos b-\cos a \sin b
$$

CANON DOCTRINAE TRIANGVLORVMINQVO TRIQVETRI

	Subrende					
	Perpendiculy D	fferenc:	Balls.	crent:	Hypotenuia	ifferēt:
35 0	5735764	23804	8191520	16718	12207746	24966
x0	5759568	23756	8174802	16789	12232712	25175
0	5783324	23706	8158013	$\underline{16858}$	12257887	25382
50	5807030	23657	8141155	16926	12283269	25591
	5830687	23608	8124229	16995	12308860	25804
50	3854295	23557	8107234	$x 7064$	12334664	26016
36.0	5877852	23509	8090170	17132	12360680	26231
$\times 0$	5991361	23459	8073038	17200	12386911	26447
20	5924820	23408	8055838	$\times 7269$	12413358	26668
	5948228	23358	8038569	17337	12440026	26887
40	5971586	23308	8021232	17404	12466913	27109
	5994894	23256	80038281	17473	12494022	27335
37	6018150	23207	7986355	17540	7	27560
	6041357	23154	7968815	17607	12548917	27788
20	6064;11	23103	7951206	17675	12576705	28019
$\overline{30}$	6087614	23053	7933533	1774 x	12604724	$2825 \times$
40	61:0667	23000	7915792	17809	12632975	28486
50	6133667	22948	7897983	17875	12661461	28720
8 ¢	6156615	22897	7880108	42	81	28960
10	6179512	22844	7862166	18009.	12719141	29201
20	6202356	22790	7844157	18075	13748342	29444
30	6225146	22739	7826082	18141	12777786	29688
40	6247885	22687	7807941	18208	12807474	29936
50	6270572	22632	7789733	$\times 8273$	12837410	30185
39	6293204	22580	7771460	18339	12867595	30436
10	5315784	22526	7753121	18405	12898031	30691
20	6338310	22472	7734716	18470	12928722	30948
30	6360782	22419	7716246	18536	129	31206
40	38322	22365	7697710	18600	12990876	31466
50	6405566	22310	7679110	13665	342	31730
$\overline{40} 0$	6427876	22256	7660445	187.30	13054072	31996
10	6450132	22201	7641715	18795	13086068	32264
20	6472333	22157	76:2920	$\underline{18860}$	13118332	32537
30	49448	$22 \mathrm{C9}$?	760	18924	13150869	32810
40	6516572	22037	7585136	18988	13183679	33086
50	6538609	2198	7566148	19092	1321676	33364
$1 \bigcirc$	6560		,	19116	1325012	33647
10	9582516	2187	7527980	$\times 9179$	13283776	33929
20	6604386	2181.	7508301	19244	13317705	34220
30	6626	2175	7489557	19306	13351925	34507
40	6647959	2170	7470251	19369	13386432	34797
	6669661	2164	7450882	$\times 9434$	13421229	35099
	Bafis.	tere	Perpendic.	nt:	2	Differẽt:

Prosthaphaeresis

$$
\cos x \cos y=\frac{1}{2}(\cos (x+y)+\cos (x-y))
$$

To multiply two large numbers

- Scale by power of 10 to get $0 \leq A \leq B \leq 1$
- Find x, y so that $\cos x=A$ and $\cos y=B$
- Find $x+y$ and $x-y$
- Find their cosines
- Take the average
- Scale back to find the required product

Toy example: 123×456

$$
\begin{array}{ll}
\rightarrow & A=0.123, B=0.456 \\
\rightarrow & x=82.9347, y=62.8707 \\
\rightarrow \quad & \cos (x+y)=-0.82713 \\
& \cos (x-y)=0.93931 \\
\rightarrow \quad & \text { Average }=0.056088 \\
\rightarrow \quad & 123 \times 456=56,088 .
\end{array}
$$

Oscillation and sine waves

Sine function models systems where:

- force acts towards equilibrium position;
- force is proportional to distance from that position.

- Hooke’s Law (1676): ceiiinosssttuv
- "ut tensio, sic vis"

Joseph Fourier (1768-1830)

- Théorie analytique de la chaleur (1822), mathematical analysis of heat flow.

Joseph Fourier (1768-1830)

- Théorie analytique de la chaleur (1822), mathematical analysis of heat flow.
- Showed that any* periodic function is made up of sine waves - AND we know how to do it!

What is $\sin x+\frac{1}{3} \sin (3 x)+\frac{1}{5} \sin (5 x)+\frac{1}{7} \sin (7 x)+\cdots ?$

1 term of the series

What is $\sin x+\frac{1}{3} \sin (3 x)+\frac{1}{5} \sin (5 x)+\frac{1}{7} \sin (7 x)+\cdots ?$

2 terms of the series

What is $\sin x+\frac{1}{3} \sin (3 x)+\frac{1}{5} \sin (5 x)+\frac{1}{7} \sin (7 x)+\cdots ?$

3 terms of the series

What is $\sin x+\frac{1}{3} \sin (3 x)+\frac{1}{5} \sin (5 x)+\frac{1}{7} \sin (7 x)+\cdots ?$

5 terms

What is $\sin x+\frac{1}{3} \sin (3 x)+\frac{1}{5} \sin (5 x)+\frac{1}{7} \sin (7 x)+\cdots ?$

10 terms

What is $\sin x+\frac{1}{3} \sin (3 x)+\frac{1}{5} \sin (5 x)+\frac{1}{7} \sin (7 x)+\cdots ?$

50 terms

What is $\sin x+\frac{1}{3} \sin (3 x)+\frac{1}{5} \sin (5 x)+\frac{1}{7} \sin (7 x)+\cdots ?$

500 terms

What is $\sin x+\frac{1}{3} \sin (3 x)+\frac{1}{5} \sin (5 x)+\frac{1}{7} \sin (7 x)+\cdots ?$

5000 terms

What is $\sin x+\frac{1}{2} \sin (2 x)+\frac{1}{3} \sin (3 x)+\frac{1}{4} \sin (4 x)+\cdots ?$

1 term

What is $\sin x+\frac{1}{2} \sin (2 x)+\frac{1}{3} \sin (3 x)+\frac{1}{4} \sin (4 x)+\cdots ?$

2 terms

What is $\sin x+\frac{1}{2} \sin (2 x)+\frac{1}{3} \sin (3 x)+\frac{1}{4} \sin (4 x)+\cdots ?$

What is $\sin x+\frac{1}{2} \sin (2 x)+\frac{1}{3} \sin (3 x)+\frac{1}{4} \sin (4 x)+\cdots ?$

5 terms

What is $\sin x+\frac{1}{2} \sin (2 x)+\frac{1}{3} \sin (3 x)+\frac{1}{4} \sin (4 x)+\cdots ?$

What is $\sin x+\frac{1}{2} \sin (2 x)+\frac{1}{3} \sin (3 x)+\frac{1}{4} \sin (4 x)+\cdots ?$

5000 terms

Frequency and Harmony

- Many worked on frequency and harmony (eg Galileo, Mersenne)
- Joseph Saveur (1653-1716) studied acoustics, detailed experiments on "the nodes of undulating strings"

PITAGORAS

The Wave Equation

- Take a string fixed at both ends (eg a violin string).
- Disturb it at time $t=0$. The vertical displacement y at a point x along the string depends both on x and t.

$$
\frac{\partial^{2} y}{\partial t^{2}}=\frac{T}{\mu} \times \frac{\partial^{2} y}{\partial x^{2}}
$$

- Jean-le-Rond D'Alembert (1717-1783) found a method to solve this.

- Solution is wave $A+$ wave B
- Periodic with period $2 l$.

Wave $A \rightarrow$
\leftarrow Wave B

- Thanks to Fourier, we know every solution is a sum of sine waves of period $2 l(l=$ length of string).
- Corresponds to frequencies $f, 2 f, 3 f$ etc.
- Instruments have different combinations of these waves.

- Initial "transient sound" is also important.

Violin/Piano soundwaves © Benjamin Hollis

GRESHAM

COLLEGE

Gresham-LMS Lecture
The Maths of Gyroscopes and Boomerangs

Hugh Hunt
$25^{\text {th }}$ May, $6 p m$

