GRESHAM

The Surprising Uses of Conic Sections

Professor Sarah Hart
Gresham Professor of Geometry

Application 1: Elliptical Gears

- Used to turn constant rate of motion into variable rate
- $a+b=r$

The equal angle property

Application 2:

Lithotripsy

Image credit: thefreedictionary.com

- Ellipse with

$$
|P F|+\left|F^{\prime} P\right|=r
$$

- Extend $\overrightarrow{F^{\prime} P}$ so that

$$
|P X|=|P F|
$$

- Then $\left|F^{\prime} X\right|=r$

Application 3: Astronomy

- The planets move in elliptical orbits with the sun at one focus.

Equation of ellipse

$$
\begin{gathered}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \\
r=2 a
\end{gathered}
$$

- $|P F|=|P X|$
- $|P F|+\left|P F^{\prime}\right|=r$
- Eccentricity $e=\frac{\left|F F^{\prime}\right|}{r}$
- Set $\left|F F^{\prime}\right|=r-1$
- $e=\frac{r-1}{r}=1-\frac{1}{r}$
- let $r \rightarrow \infty$
- In limit, $e=1$
- mark focus F
- let $r \rightarrow \infty$

- $|P F|=|P X|$
- $|P F|+\left|P F^{\prime}\right|=r$
- Eccentricity $e=\frac{\left|F F^{\prime}\right|}{r}$
- Set $\left|F F^{\prime}\right|=r-1$
- $e=\frac{r-1}{r}=1-\frac{1}{r}$
- let $r \rightarrow \infty$
- In limit, $e=1$
- Circle \rightarrow line
- Still have |PF| = |PX|

Equation of parabola

- Definition: distance to focus equals distance to directrix.
<do a few lines of algebra>

$$
y^{2}=4 a x
$$

Equal Angle Property

- Parallel rays reflected through focus.

Application 1: Telescopes and Satellite Dishes

Application 2: Archimedes Death Ray???

Application 2: Lights

Application 3: Fountains

Hyperbolas

Properties of the hyperbola

- ||PF| - |PF ${ }^{\prime}| |$ is constant
- Light directed towards one focus is reflected to the other focus

Application 1: Cassegrain telescope

Hyperbolas and Doubling the Cube

Application 2: Buildings

Tidying Rectangles

- Take all rectangles with same area (say 12).

Tidying Rectangles

- Take all rectangles with same area (say 12).
- Tidy them!
- Rectangle width x height y has area $x y$.
- $x y=12$, so $y=\frac{12}{x}$.

Application 3: The demand curve

demanded

- Law of Demand: (usually) price rise = demand fall
- Demand curve plots price against quantity demanded
- Suppose budget fixed.
- Demand curve is hyperbola!

GRESHAM
 COLLEGE

The incredible sine wave and its uses

23 ${ }^{\text {rd }}$ May 2022, 1pm
@greshamcollege @sarahlovesmaths

