121 (cosq + ising 1X+00 a 6,X+60 V(k,n)(m-k)! ₽ B B) 0 0 $(A \cap B) = P(A) \cdot P(B)$ D 0 0 loga + loga S Log P(B) I Ь Z = a + biZ; 1 Y= Cosx a 6 **I** 6 a $(a+b)^{n} = \binom{n}{b} a^{n}$ 60+ $\binom{n}{2}a$ +(m-1) a°b' a 1tg 71828 ax 6 ni $(\omega)_{f}(\varphi(x))\varphi'(x)$ du

Equations are important

• They are eternally true

- They compress a huge amount of information into a single formula
- The same equation can have many different applications
- Equations lead to algorithms, which lead to new technology

Some famous maths equations

$$a^2 + b^2 = c^2$$
 Pythagoras $a^n + b^n = c^n$ Fermat

$$V + F = E - 2$$

$$e^{i\theta} = \cos(\theta) + i\sin(\theta).$$
 Euler

Some famous physics equations

$$\mathbf{F}_{12} = \frac{G \ m_1 \ m_2 \ (\mathbf{x}_1 - \mathbf{x}_2)}{\|\mathbf{x}_1 - \mathbf{x}_2\|^3}.$$
 Newton

$$i\hbar\frac{\partial\psi}{\partial t} = \left[\frac{-\hbar^2}{2m}\nabla^2 + V(\mathbf{r},t)\right]\psi \quad \text{Schrödinger}$$

$$E = m c^{2}$$

$$G_{ab} = 4\pi T_{ab}$$
Einstein

Maxwell

My Five Favourite Equations

$$A \ x = b$$
$$A \ x = \lambda \ x$$

$$\hat{f}(\omega) = \int_{-\infty}^{\infty} e^{-i\omega t} f(t) dt,$$
$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega t} \hat{f}(\omega) d\omega$$

$$\left(\begin{array}{c} \frac{Du}{Dt} = -\nabla P + \frac{1}{Re} \nabla^2 u, \quad \nabla . u = 0. \end{array}\right)$$

$$\frac{dx}{dt} = -\lambda \ x(t-\tau).$$

Equation one: The Linear Equation

Most problems end up being this. Shopping, medical imaging, weather forecasting, ...

- **b** is known
- x is unknown
- A is a linear operator linking **x** to **b**

Examples of operators A:

Matrix: $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ Differential: $\frac{d^2x}{dt^2}$ or even $\frac{\partial^2 x}{\partial y^2} + \frac{\partial^2 x}{\partial z^2}$

Example: Going shopping

Want to buy x apples and y bananas

Apples cost £2 each. Bananas cost £3 each

Budget of £15

Each apple has 4 units of vitamin C, banana has 3 units

Total vitamin C content is 25 units

What values of x and y should we take?

Linear matrix equation

Solution

$$\mathbf{x} = A^{-1}\mathbf{b}$$

$$A^{-1} = \begin{pmatrix} -1/2 & 1/2 \\ 2/3 & -1/3 \end{pmatrix}$$

$$\mathbf{x} = (x, y)$$
 where $x = 4$ and $y = 3$

Problem has two unknowns and is easy to solve

Problem with many N unknowns is much harder to solve

Matters as A x = b has vast numbers of applications

Eg. medical imaging , weather forecasting, banking, designing aircraft , building bridges, retail, ...

N = 1000 000 0000 is not uncommon

Eg. Medical imaging

Shine many X-Rays through a body

Matrix

- The image is represented as a MATRIX of numbers.
- Matrix :- A two dimensional array of numbers arranged in rows and columns.
- Each number represents the value of the image at that location

- x Organ optical density at each point (more than..)
 b Attenuation of each X-ray
 A Tomography matrix
- A **Tomography** matrix

III posed as more unknowns than equations

Use a-priori information (Bayesian)

How to solve it?

• Direct method:

Gaussian Elimination

• Iterative method: Successively improve the solution

Conjugate Gradient Method

• Fastest and best (but most complicated)

Multi-grid method

Equation 2: The Matrix Eigenvalue Equation

The equation for sound, WiFI and Google

$$\nabla^2 \mathbf{x} = -\omega^2 \mathbf{x}$$

Helmholtz Equation

 $\omega \quad \text{vibrational frequency} \\ \mathbf{x} \quad \text{vibrational mode} \\$

Vibrational waves in a dish

Singing in a football stadium

Example:

If A is an N*N matrix then there are N solutions.

These satisfy

 $\det(A - \lambda I) = 0$

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

$$\lambda^2 - (a+d)\lambda + ad - bc = 0$$

Vibration in engineering, chemistry, physics

Acoustics, Maxwell, Electromagnetic theory, WiFi

$$abla^2 \mathbf{x} = -\omega^2 \mathbf{x}$$

Quantum theory

$$i\hbar\frac{\partial\psi}{\partial t} = \left[\frac{-\hbar^2}{2m}\nabla^2 + V(\mathbf{r},t)\right]\psi$$

PageRank Algorithm

• The ith webpage gets rank R_i

- This page will be pointed to by m other pages.
- These each have ranks $\,R_{ij}\,$ and point to $\,N_{ij}\,$ other pages
- The ranks satisfy (Damping d = 0.85)

$$R_{i} = \frac{(1-d)}{N} + d\left(\frac{R_{i1}}{N_{i1}} + \frac{R_{i12}}{N_{i2}} + \dots + \frac{R_{im}}{N_{im}}\right).$$

Posed as a matrix eigenvalue equation

$$M R = R$$

M: Augmented adjacency matrix HUGE

Eigenvalue of one. Need to find eigenvector R

Use iteration
$$R^{n+1} = M R^n$$

Works fast and is the basis of Google

Equation 3: The Fourier Transform

Decomposing a function into its constituent waves

Look at the different harmonics of the notes

Find these harmonics by using the Fourier Transform

Diffraction of light through a slit

Fourier Transform is THE essential tool in optics, telecommunications, image processing, spectral analysis, acoustics,

Want to communicate over a channel

$$h(t) = \int_{-\infty}^{\infty} f(t-\tau) g(\tau) d\tau.$$

Convolution

Before

After

MRI Imaging

Evaluate using the FFT Algorithm (1965)

Equation 4: The Navier-Stokes Equations

$$\begin{aligned} \frac{D\mathbf{u}}{Dt} + 2\mathbf{f} \times \mathbf{u} &= -\frac{1}{\rho} \nabla P + \frac{1}{Re} \nabla^2 \mathbf{u} - g\mathbf{k}, \\ \frac{\partial \rho}{\partial t} + \nabla .(\rho \mathbf{u}) &= 0. \end{aligned}$$

The equations of the weather

The equations for weather and climate

The Navier-Stokes equations:

- Are extremely important
- Are VERY hard to solve, even on a super computer
- Have very complex, and even chaotic solutions
- We don't even know if they have regular solutions at all!

Turbulence

The Lorenz Equations for chaos

 $\frac{dx}{dt} = \sigma(y - x),$ $\frac{dy}{dt} = x(\rho - z) - y,$ $\frac{dz}{dt} = xy - \beta z.$

Chaotic strange attractor

The SIR equations for an epidemic

Predictions of the SIR model

Time (days)

Population

Equation 5: The Shower Equation

This equation explains how we can control things

Can you control a shower if there is a delay of τ between the control and its effect?

$$\frac{dx}{dt} = -\lambda \ x(t-\tau).$$

$$x(t) = e^{\alpha t}$$

$$\alpha e^{\alpha t} = -\lambda e^{\alpha (t-\tau)} = -\lambda e^{\alpha t} e^{-\alpha \tau}$$

$$\alpha = -\lambda \ e^{-\alpha\tau}.$$

Stable control only if the real part of alpha is negative

The effect of El Niño on weather in the Andes

The El Nino Southern Oscillation ENSO

Delay leads to hard to predict behaviour

Source: National Oceanic And Atmospheric Administration

Most things we try to control have a delay

This can make it very hard to control them

The shower problem is a good example

So is the impact of responses to the COVID-19 emergency

There has never been a time when an understanding of mathematics is more important to our lives